Skip to main content
Log in

A simple method using β-globin polymerase chain reaction for the species identification of animal cell lines—A progress report

  • Articles
  • Product Applications
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Continuous cell lines are widely used in cell biology and serve as model systems in basic and applied research. Fundamental requirements for the use of cell lines are a well-identified origin and the exclusion of cross-contamination by prokaryotic or eukaryotic cells. Because the cross-contamination of one cell line with another cell line may occur in a concealed manner, special emphasis must be taken to (1) prevent such an “accident” and (2) monitor regularly the identity of the cell line(s) in use. Apart from human cell lines, mouse-, rat-, and hamster-derived cell lines are used in basic cell culture and biotechnology. We established a polymerase chain reaction (PCR) assay to detect and confirm the species origin for these species and to detect interspecies cross-contamination. Our PCR method is based on oligonucleotide primers annealing to specific sequences in the β-globin gene, which were designed to amplify one deoxyribonucleic acid (DNA) segment only per analyzed sample. We confirmed the species identity of 82 cell lines as human, mouse, rat, and Syrian hamster by β-globin PCR. The DNAs from eight additional cell lines of less frequently used species were not amplified with the primers chosen. Cross-contamination of 5–10% of either mouse of rat DNA was detectable. One species-specific primer pair was sufficient for confirmation of the expected species, and for identification of an unknown cell line the combination of two or more primer pairs is suggested. Our PCR assay represents a powerful, fast, easy, robust, and inexpensive method for speciation and does not need any elaborate sequencing or computer-based analysis system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartlett, S. E.; Davidson, W. S. FINS (forensically informative nucleoside sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques 12:408–411; 1992.

    PubMed  CAS  Google Scholar 

  • Bielawski, J. P.; Noack, K.; Pumo, D. E. Reproducible amplification of RAPD markers from vertebrate DNA. BioTechniques 18:856–860; 1995.

    PubMed  CAS  Google Scholar 

  • Buntjer, J. B.; Lenstra, J. A. Mammalian species identification by interspersed repeat PCR fingerprinting. J. Ind. Microbiol. Biotechnol. 21:121–127; 1998.

    Article  CAS  Google Scholar 

  • Desmarais, E.; Lannelue, I.; Lagnel, J. Direct amplification of length polymorphisms (DALP) or how to get and characterize new genetic markers in many species. Nucleic Acids Res. 26;1458–1465; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dirks W.; Jäger, K.; Milch, H.; Drexler, H. G. First searchable database for DNA profiles of human cell lines: sequential use of fingerprint techniques for authentication. Cell. Mol. Biol. 45:841–853; 1999.

    PubMed  CAS  Google Scholar 

  • Drexler, H. G.; Dirks, W. G.; MacLeod, R. A. F. False human hematopoietic cell lines: cross-contaminations and misinterpretations. Leukemia 13:1601–1607; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Drexler, H. G.; Dirks, W. G.; MacLeod, R. A. F.; Quentmeier, H.; Steube, K. G.; Uphoff, C. C. Catalogue of human and animal cell lines. Braunschweig, Germany, DSMZ; 2001. Available at www.dsmz.de.

    Google Scholar 

  • Drexler, H. G.; Uphoff, C. C.; Dirks, W. G.; MacLeod, R. A. F. Mix-ups and mycoplasma: the enemies within. Leuk. Res. 26;329–333; 2002.

    Article  PubMed  Google Scholar 

  • Gartler, S. M. Apparent HeLa contamination of human heterodiploid cell lines. Nature 217: 750–751; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Halton, D. M.; Peterson, W. D.; Hukku, B. Cell culture quality control by rapid isoenzymatic characterization. In Vitro 19:24–26; 1983.

    Article  Google Scholar 

  • Jeffreys, A. J.; Wilson V.; Thein, S. L. Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. M.; Subar, M.; Li, H.; Boussios, T. Cloning of two adult hamster globin cDNAs (alpha and beta major). Biochim. Biophys. Acta 1130:343–344; 1992.

    PubMed  CAS  Google Scholar 

  • MacLeod, R. A. F.; Dirks, W. G.; Matsuo, Y.; Kaufmann, M.; Milch, H.; Drexler, H. G. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int. J. Cancer 83:555–563; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Markovic, O.; Markovic, N. Cell cross-contamination in cell cultures: the silent and neglected danger. In Vitro. Cell. Dev. Biol. 34:1–8; 1998.

    CAS  Google Scholar 

  • Masters, J. R. False cell lines: the problem and the solution. Cytotechnology 39:17–22; 2002.

    Article  Google Scholar 

  • Masters, J. R.; Bedford P.; Kearney, A.; Povey, S.; Franks, L. M. Bladder cancer cell line cross-contamination: identification using a locus-specific minisatellite probe. Brit. J. Cancer 57:284–286; 1988.

    PubMed  CAS  Google Scholar 

  • Masters, J. R.; Thompson, J. A.; Daly-Burns, B., et al. Short tandem repeat profiling provides an international reference standard for human cell lines. Proc. Natl. Acad. Sci. USA 98:8012–8017; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Miller, O. J.; Miller, D. A.; Allerdice, P. W. Quinacrine fluorescent karyotypes of human diploid and heteroploid cell lines. Cytogenetics 10:338–341; 1971.

    PubMed  CAS  Google Scholar 

  • Nelson-Rees, W. A.; Daniels, D. W.; Flandermeyer, R. R. Cell cross-contamination in cell cultures. Science 212:446–452; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees, W. A.; Flandermeyer, R. R.; Hawthorne, P. K. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184:1093–1096; 1974.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien, S. J.; Kleiner, G.; Olson, R.; Shannon, J. E. Enzyme polymorphisms as genetic signatures in human cell cultures. Science 195:1345–1348; 1977.

    Article  PubMed  Google Scholar 

  • Oldroyd, N. J.; Urquhart A.; Kimpton, C. P.; Millican, E. S.; Watson, S. K.; Downes, T. J.; Gill, P. A highly discriminating octoplex short tandem repeat polymerase chain reaction system suitable for human individual identification. Electrophoresis 16:334–337; 1995.

    Article  PubMed  CAS  Google Scholar 

  • O'Toole, C. M.; Povey, S.; Hepburn, P.; Franks, L. M. Identity of some human bladder cancer cell lines. Nature 301:429–430; 1983.

    Article  PubMed  Google Scholar 

  • Parodi, P.; Aresu, O.; Bini, D., et al. Species identification and confirmation of human and animal cell lines: a PCR based method. BioTechniques 32:432–440; 2002.

    PubMed  CAS  Google Scholar 

  • Rothfels, F. H.; Axelrad, A. A.; Simonovitch, L. The origin of altered cell lines from mouse, monkey, and man as indicated by chromosomes and transplantation studies. Proc. Can. Cancer Res. Conf. 3:5196–5197; 1959.

    Google Scholar 

  • Savelkoul, P. H. M.; Aarts, H. J. M.; De Haas, J., et al. Amplified fragment length polymorphism analysis: the state of an art. J. Clin. Microbiol. 37:3083–3091; 1999.

    PubMed  CAS  Google Scholar 

  • Simpson, W. F.; Stulberg, C. S. Species identification of animal cell strains by immuno-fluorescence. Nature 199:616–617; 1963.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, G. N.; Bolton, B. J.; Doyle, A. DNA fingerprinting transforms the art of cell authentication. Nature 357:261–262; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, G. N.; Masters, J. R. W.; Hay, R. J.; Drexler, H. G.; MacLeod, R. A. F.; Freshney, R. I. Cell contamination leads to inaccurate data: we must take action now. Nature 403:356; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Steube, K. G.; Grunicke, D.; Drexler, H. G. Isoenzyme analysis as a rapid method for the examination of the species identity of cell cultures. In Vitro Cell. Dev. Biol. 31A:115–119; 1995.

    Google Scholar 

  • Stevenson, R. Development of cell banking in the US 1960–1985: a strategic approach to quality control. Adv. Cell Cult. 51:267–288; 1987.

    Google Scholar 

  • Stulberg, C. S.; Peterson, W. D.; Simpson, W. F. Identification of cells in culture. Am. J. Hematol. 1:237–242; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Thacker, J. Fingerprinting of mammalian cell lines with a single PCR primer. BioTechniques 16:252–253; 1993.

    Google Scholar 

  • Thacker, J.; Webb, M. B. T.; Debenham, P. G. Fingerprinting cell lines: use of hypervariable DNA probes to characterize mammalian cell cultures. Somat. Cell Mol. Gen. 14:519–525; 1988.

    Article  CAS  Google Scholar 

  • Vos, P.; Hogers, R.; Bleeker, M., et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus G. Steube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steube, K.G., Meyer, C., Uphoff, C.C. et al. A simple method using β-globin polymerase chain reaction for the species identification of animal cell lines—A progress report. In Vitro Cell.Dev.Biol.-Animal 39, 468–475 (2003). https://doi.org/10.1290/1543-706X(2003)039<0468:ASMUGP>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0468:ASMUGP>2.0.CO;2

Key words

Navigation